Some Bounds for Harary Index of Graphs.

H. S. Ramane, V. V. Manjalapur

Abstract

Harary index of graph G is defined as the sum of reciprocal of distance between all pairs of vertices of the graph G and is denoted by $H(G)$. Eccentricity of vertex v in G is the distance to a vertex farthest from v. In this paper we obtain some bounds for $H(G)$ in terms of eccentricities. Further we extend these results to the self-centered graphs and also we have given simple algorithm to find the Harary index of graphs.

Keywords- Diameter, distance, eccentricity, Harary index, radius, self-centered graph..

1 Introduction

THROUGHOUT this paper we have consider only simple and connected graph without loops and multiple edges. Let G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ and edge set $E(G)$. The distance between two vertices u, v of G is denoted by $d(u, v)$ and is defined as the length of the shortest path between u and v in graph G. The degree of a vertex v in G is the number of edges incident to it and is denoted by $\operatorname{deg}(v)$. The eccentricity $e(v)$ of a vertex V is the maximum distance from it to any other vertex,

$$
e(v)=\max \{d(u, v) \mid u \in V(G)\} .
$$

The radius $r(G)$ of a graph G is the minimum eccentricity of the vertices. A shortest $u-v$ path is often called geodesic. The diameter $d(G)$ of a connected graph G is the length of any longest geodesic. A vertex v is called central vertex of G if $e(v)=r(G)$. A graph is said to be selfcentered if every vertex is a central vertex. Thus in a selfcentered graph $r(G)=d(G)$. An eccentric vertex of a vertex v is a vertex farthest from v. An eccentric path $P(v)$ is a path of length $e(v)$ joining v and its eccentric vertex. For a given vertex there may exists more than one eccentric path.

The Harary index of graph G denoted by $H(G)$, has been introduced independently by Plavsic et. al [14] and by Ivanciuc et. al [8] in 1993 for the characterization of molecular graphs. If $v_{1}, v_{2}, \ldots v_{n}$ are the vertices of graph G then the Harary index of G is defined as

$$
H(G)=\sum_{1 \leq i<j \leq n} \frac{1}{d\left(v_{i}, v_{j}\right)},
$$

- Harishchandra S. Ramane

Karnatak University, Dharwad
Dharwad - 580003, India.
E-mail: hsramane@yahoo.com

- Vinayak V. Manjalapur

Karnatak University, Dharwad
Dharwad - 580003, India.
E-mail: vinu.m001@gmail.com
where $d\left(v_{i}, v_{j}\right)$ is the distance between vertices v_{i} and v_{j}.

$$
\begin{array}{r}
\left|A_{3}\left(v_{i}\right)\right|=n-e_{i}-\operatorname{deg}\left(v_{i}\right) \\
\text { Now } \sum_{v_{j} \in A_{1}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}=\sum_{i=1}^{e_{i}} \frac{1}{i} \\
\sum_{v_{j} \in A_{2}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}=\operatorname{deg}\left(v_{i}\right)-1 \\
\sum_{v_{j} \in A_{3}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)} \leq \frac{\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)\right.}{2}
\end{array}
$$

Therefore,

$$
\begin{aligned}
\frac{1}{d\left(v_{i} \mid G\right)} & =\sum_{j=1}^{n} \frac{1}{d\left(v_{i}, v_{j}\right)} \\
& =\sum_{v_{j} \in A_{1}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}+\sum_{v_{j} \in A_{2}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}+\sum_{v_{j} \in A_{3}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)} \\
& \leq \sum_{i=1}^{e_{i}} \frac{1}{i}+\operatorname{deg}\left(v_{i}\right)-1+\frac{\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)\right.}{2} \\
& =\frac{\left(n+\operatorname{deg}\left(v_{i}\right)-2\right.}{2}+\sum_{i=1}^{e_{i}} \frac{1}{i}-\frac{e_{i}}{2} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
H(G) & =\frac{1}{2} \sum_{i=1}^{n} \frac{1}{d\left(v_{i} \mid G\right)} \\
& \leq \frac{1}{2} \sum_{i=1}^{n}\left[\sum_{i=1}^{e_{i}} \frac{1}{i}+\frac{\left(n+\operatorname{deg}\left(v_{i}\right)-2\right.}{2}-\frac{e_{i}}{2}\right] \\
& =\frac{1}{4}\left[n(n-2)+2 m+2 n \sum_{i=1}^{e_{i}} \frac{1}{i}-n e_{i}\right] .
\end{aligned}
$$

For equality,
Let G be a graph and $P\left(v_{i}\right)$ be one of the eccentric paths of $v_{i} \in V(G)$. Let $A_{1}\left(v_{i}\right), A_{2}\left(v_{i}\right)$ and $A_{3}\left(v_{i}\right)$ be the sets as defined in the first part of the proof of this theorem.

Let $d\left(v_{i}, v_{j}\right)=2$, where $v_{j} \in A_{3}\left(v_{i}\right)$.
Therefore $\sum_{v_{j} \in A_{3}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}=\frac{n-e_{i}-\operatorname{deg}\left(v_{i}\right)}{2}$,

$$
\sum_{v_{j} \in A_{1}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}=\sum_{i=1}^{e_{i}} \frac{1}{i}
$$

and

$$
\sum_{v_{j} \in A_{2}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}=\operatorname{deg}\left(v_{i}\right)-1
$$

Thus,

$$
\begin{aligned}
& \frac{1}{d\left(v_{i} \mid G\right)}=\sum_{j=1}^{n} \frac{1}{d\left(v_{i}, v_{j}\right)} \\
& =\sum_{v_{j} \in A_{1}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}+\sum_{v_{j} \in A_{2}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}+\sum_{v_{j} \in A_{3}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)} \\
& \\
& =\sum_{i=1}^{e_{i}} \frac{1}{i}+\operatorname{deg}\left(v_{i}\right)-1+\frac{n-e_{i}-\operatorname{deg}\left(v_{i}\right)}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}\left[n(n-2)+2 m+2 n \sum_{i=1}^{e_{i}} \frac{1}{i}-\sum_{i=1}^{n} e_{i}-\frac{n l}{3}\right] \\
& \leq \frac{1}{4}\left[n(n-2)+2 m+2 n \sum_{i=1}^{e_{i}} \frac{1}{i}-n e_{i}\right]
\end{aligned}
$$

as $l \geq 1$, which is a contradiction. This contradiction proves the result.

Corollary 2.2 Let G be a self-centered graph with n vertices, m edges and radius $r=r(G)$, then
$H(G) \leq \frac{1}{4}\left[n(n-2)+2 m+2 n \sum_{i=1}^{r} \frac{1}{i}-n r\right]$.
Equality holds if and only if for every vertex v_{i} of a self-centered graph G, if $P\left(v_{i}\right)$ is one of the eccentric path of v_{i} then for every $v_{j} \in$ $V(G)$ which is not on the eccentric path $P\left(v_{i}\right), d\left(v_{i}, v_{j}\right) \leq 2$.

Proof. For self-centered graph each vertex has same eccentricity equal to the radius r, that is, $e_{i}=e\left(v_{i}\right)=r, i=1,2$, \ldots, n. Therefore from Eq. (1)

$$
\begin{aligned}
H(G) & \leq \frac{1}{4}\left[n(n-2)+2 m+2 \sum_{i=1}^{n} \sum_{i=1}^{r} \frac{1}{i}-\sum_{i=1}^{n} r\right] \\
& =\frac{1}{4}\left[n(n-2)+2 m+2 n \sum_{i=1}^{r} \frac{1}{i}-n r\right]
\end{aligned}
$$

The proof of the equality part is similar to the proof of equality part of Theorem 2.1.

Theorem 2.3 Let G be a connected graph with n vertices and $e_{i}=$ $e\left(v_{i}\right), i=1,2, \ldots, n$, then
$H(G) \leq \frac{1}{2}\left[n(n-1)+n \sum_{i=1}^{e_{i}} \frac{1}{i}-n e_{i}\right]$.
Equality holds if and only if for every vertex v_{i} of G, if $P\left(v_{i}\right)$ is is one of the eccentric path of v_{i}, then for every $v_{j} \in V(G)$ which is not on $P\left(v_{i}\right), d\left(v_{i}, v_{j}\right)=1$.

Proof: Let $e_{\mathrm{i}}=\mathrm{e}\left(v_{\mathrm{i}}\right), i=1,2, \ldots, n$ and $P\left(v_{i}\right)$ be one of the eccentric path of $v_{i} \in V(G)$.
Let $\quad B_{1}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is on eccentric path $P\left(v_{i}\right)$ of $\left.v_{i}\right\}$,

$$
B_{2}\left(v_{i}\right)=\left\{v_{j} \mid v_{j} \text { is not on the eccentric path } P\left(v_{i}\right) \text { of } v_{i}\right\}
$$

Clearly $\quad B_{1}\left(v_{i}\right) \cup B_{2}\left(v_{i}\right)=V(G) \quad$ and

$$
\left|B_{1}\left(v_{i}\right)\right|=e_{i}+1, \quad\left|B_{2}\left(v_{i}\right)\right|=n-e_{i}-1
$$

Now $\sum_{v_{j} \in B_{1}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}=\sum_{i=1}^{e_{i}} \frac{1}{i}$,

$$
\sum_{v_{j} \in B_{2}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)} \leq\left(n-e_{i}-1\right)
$$

Therefore

$$
\begin{aligned}
\frac{1}{d\left(v_{i} \mid G\right)} & =\sum_{j=1}^{n} \frac{1}{d\left(v_{i}, v_{j}\right)} \\
& =\sum_{v_{j} \in B_{1}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}+\sum_{v_{j} \in B_{2}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)} \\
& \leq \sum_{i=1}^{e_{i}} \frac{1}{i}+n-e_{i}-1
\end{aligned}
$$

Therefore

$$
\begin{aligned}
H(G) & =\frac{1}{2} \sum_{i=1}^{n} \frac{1}{d\left(v_{i} \mid G\right)} \\
& \leq \frac{1}{2} \sum_{i=1}^{n}\left[\sum_{i=1}^{e_{i}} \frac{1}{i}+\left(n-e_{i}-1\right)\right] . \\
& =\frac{1}{2}\left[n(n-1)+n \sum_{i=1}^{e_{i}} \frac{1}{i}-n e_{i}\right] .
\end{aligned}
$$

For equality,
Let G be a graph and $P\left(v_{i}\right)$ be one of the eccentric paths of $v_{i} \in V(G)$. Let $B_{1}\left(v_{i}\right)$ and $B_{2}\left(v_{i}\right)$ be the sets as defined in the first part of the proof of this theorem.

Let $d\left(v_{i}, v_{j}\right)=1$, where $v_{j} \in B_{2}\left(v_{i}\right)$.
Therefore $\sum_{v_{j} \in B_{2}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}=n-e_{i}-1$,
and $\quad \sum_{v_{j} \in B_{1}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}=\sum_{i=1}^{e_{i}} \frac{1}{i}$.
Therefore

$$
\begin{aligned}
\frac{1}{d\left(v_{i} \mid G\right)} & =\sum_{j=1}^{n} \frac{1}{d\left(v_{i}, v_{j}\right)} \\
& =\sum_{v_{j} \in B_{1}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}+\sum_{v_{j} \in B_{2}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)} \\
& =\sum_{i=1}^{e_{i}} \frac{1}{i}+n-e_{i}-1
\end{aligned}
$$

Therefore

$$
\begin{aligned}
H(G)=\frac{1}{2} \sum_{i=1}^{n} & \frac{1}{d\left(v_{i} \mid G\right)} \\
& =\frac{1}{2} \sum_{i=1}^{n}\left[\sum_{i=1}^{e_{i}} \frac{1}{i}+\left(n-e_{i}-1\right)\right] \\
& =\frac{1}{2}\left[n(n-1)+n \sum_{i=1}^{e_{i}} \frac{1}{i}-n e_{i}\right]
\end{aligned}
$$

Conversely,
Suppose G is not such graph as defined in the equality part of this theorem. Then there exist at least one vertex $v_{j} \in B_{2}\left(v_{i}\right)$ such that $d\left(v_{i}, v_{j}\right) \geq 2$. Let $B_{2}\left(v_{i}\right)$ be
partitioned into two sets $B_{21}\left(v_{i}\right)$ and $B_{22}\left(v_{i}\right)$, where
$B_{21}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is not on the eccentric path $P\left(v_{i}\right)$ of v_{i} and $\left.d\left(v_{i}, v_{j}\right)=1\right\}$
$B_{22}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is not on the eccentric path $P\left(v_{i}\right)$ of v_{i} and $\left.d\left(v_{i}, v_{j}\right) \geq 2\right\}$.
Let $\left|B_{22}\left(v_{i}\right)\right|=l \geq 1$
Therefore $\left|B_{21}\left(v_{i}\right)\right|=n-e_{i}-1-l$.
Therefore $\sum_{v_{j} \in B_{1}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}=\sum_{i=1}^{e_{i}} \frac{1}{i}$,
$\sum_{v_{j} \in B_{21}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}=n-e_{i}-1-l$ and $\sum_{v_{j} \in B_{22}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)} \geq \frac{l}{2}$.
Therefore

$$
\begin{aligned}
& \frac{1}{d\left(v_{i} \mid G\right)}=\sum_{j=1}^{n} \frac{1}{d\left(v_{i}, v_{j}\right)} \\
& \quad=\sum_{v_{j} \in B_{1}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}+\sum_{v_{j} \in B_{21}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}+\sum_{v_{j} \in B_{22}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)} \\
& \quad \leq \sum_{i=1}^{e_{i}} \frac{1}{i}+\left(n-e_{i}-1-\frac{l}{2}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
H(G) & =\frac{1}{2} \sum_{i=1}^{n} \frac{1}{d\left(v_{i} \mid G\right)} \\
& \leq \frac{1}{2} \sum_{i=1}^{n}\left[\sum_{i=1}^{e_{i}} \frac{1}{i}+\left(n-e_{i}-1-\frac{l}{2}\right)\right] \\
& \leq \frac{1}{2} \sum_{i=1}^{n}\left[n(n-1) \sum_{i=1}^{n} \frac{1}{2}+n \sum_{i=1}^{e_{i}} \frac{1}{i}-n e_{i}\right] \text { as } l \geq 1 . \\
& \leq \frac{1}{2} \sum_{i=1}^{n}\left[n(n-1)-\frac{n}{2}+n \sum_{i=1}^{e_{i}} \frac{1}{i}-n e_{i}\right] .
\end{aligned}
$$

This is a contradiction. Hence the proof.

If G is a self-centered graph then $e_{i}=e\left(v_{i}\right)=r(G)$ for all $i=1,2, \ldots, n$. Substituting this in Eq. (2) we get following corollary.

Corollary 2.4: Let G be a self-centered graph with n vertices and radius $r=r(G)$, then $H(G) \leq \frac{1}{2}\left[n(n-1)+n \sum_{i=1}^{e_{i}} \frac{1}{i}-n r\right]$.

Equality holds if and only if for every vertex v_{i} of a selfcentered graph G, if $P\left(v_{i}\right)$ is one of the eccentric path of v_{i} then for every $v_{j} \in V(G)$ which is not on the eccentric path $P\left(v_{i}\right), d\left(v_{i}, v_{j}\right)=$ 1.

$$
\begin{equation*}
H(G) \geq \frac{1}{2 d}\left[n^{2}-n e_{i}+2 m(d-1)-n d\left(1-\sum_{i=1}^{e_{i}} \frac{1}{i}\right)\right] \tag{3}
\end{equation*}
$$

Equality holds if and only if diam(G) ≤ 2.

Proof: Let $P\left(v_{i}\right)$ be one of the eccentric path of $v_{i} \in V(G)$.
Let $\quad A_{1}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is on the eccentric path $P\left(v_{i}\right)$ of $\left.v_{i}\right\}$,
$A_{2}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is adjacent to v_{i} and which is not on the eccentric path $P\left(v_{i}\right)$ of $\left.v_{i}\right\}$,
$A_{3}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is not adjacent to v_{i} and not on the eccentric path $P\left(v_{i}\right)$ of $\left.v_{i}\right\}$.
Clearly $\quad A_{1}\left(v_{i}\right) \cup A_{2}\left(v_{i}\right) \cup A_{3}\left(v_{i}\right)=V(G) \quad$ and

$$
\begin{aligned}
& \left|A_{1}\left(v_{i}\right)\right|=e_{i}+1, \quad\left|A_{2}\left(v_{i}\right)\right|=\operatorname{deg}\left(v_{i}\right)-1, \\
& \left|A_{3}\left(v_{i}\right)\right|=n-e_{i}-\operatorname{deg}\left(v_{i}\right) .
\end{aligned}
$$

Now $\sum_{v_{j} \in A_{1}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}=\sum_{i=1}^{e_{i}} \frac{1}{i}$,

$$
\begin{aligned}
& \sum_{v_{j} \in A_{2}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}=\operatorname{deg}\left(v_{i}\right)-1 \\
& \sum_{v_{j} \in A_{3}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)} \geq \frac{\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)\right)}{d} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{1}{d\left(v_{i} \mid G\right)}=\sum_{j=1}^{n} \frac{1}{d\left(v_{i}, v_{j}\right)} \\
& =\sum_{v_{j} \in A_{1}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}+\sum_{v_{j} \in A_{2}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}+\sum_{v_{j} \in A_{3}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)} \\
& \geq \sum_{i=1}^{e_{i}} \frac{1}{i}+\operatorname{deg}\left(v_{i}\right)-1+\frac{\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)\right)}{d} \\
& =\left[n-e_{i}+\operatorname{deg}\left(v_{i}\right)(d-1)-d\left(1-\sum_{i=1}^{e_{i}} \frac{1}{i}\right)\right] .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& H(G)=\frac{1}{2} \sum_{i=1}^{n} \frac{1}{d\left(v_{i} \mid G\right)} \\
& \geq \frac{1}{2 d} \sum_{i=1}^{n}\left[n-e_{i}+\operatorname{deg}\left(v_{i}\right)(d-1)-d\left(1-\sum_{i=1}^{e_{i}} \frac{1}{i}\right)\right] \\
&=\frac{1}{2 d}\left[n^{2}-n e_{i}+2 m(d-1)-n d\left(1-\sum_{i=1}^{e_{i}} \frac{1}{i}\right)\right] \\
& \text { since } \sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)=2 m
\end{aligned}
$$

Theorem 2.5 Let G be a connected graph with n vertices, m edges and $\operatorname{diam}(G)=d$. Let $e_{i}=e\left(v_{i}\right), i=1,2, \ldots, n$, then

For equality,
Let $\operatorname{diam}(G) \leq 2$.

Case 1: If $\operatorname{diam}(G)=1$ then $G=K_{n}$. Therefore $A_{3}\left(v_{i}\right)=\Phi$ and e_{i} $=e\left(v_{i}\right)=1, i=1,2, \ldots, n$.

Therefore

$$
H(G)=\frac{1}{2}\left[n^{2}-n(1)+2 m(d-1)-n d\left(1-\sum_{i=1}^{e_{i}} \frac{1}{i}\right)\right]=\frac{n(n-1)}{2} .
$$

Case 2: If $\operatorname{diam}(G)=2$, then for $v_{j} \in A_{3}\left(v_{i}\right), d\left(v_{i}, v_{j}\right)=2$.
Therefore, $\sum_{v_{j} \in A_{3}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}=\frac{\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)\right)}{2}$.
Hence $H(G)=\frac{1}{2 d}\left[n^{2}-n e_{i}+2 m(d-1)-n d\left(1-\sum_{i=1}^{e_{i}} \frac{1}{i}\right)\right]$

$$
=\frac{1}{4}\left[n(n-2)-n e_{i}+2 m+2 n \sum_{i=1}^{e_{i}} \frac{1}{i}\right] .
$$

Conversely,

$$
\begin{gather*}
\frac{1}{d\left(v_{i} \mid G\right)}=\sum_{j=1}^{n} \frac{1}{d\left(v_{i}, v_{j}\right)} \\
=\sum_{v_{j} \in A_{1}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}+\sum_{v_{j} \in A_{2}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)}+\sum_{v_{j} \in A_{3}\left(v_{i}\right)} \frac{1}{d\left(v_{i}, v_{j}\right)} \tag{4}
\end{gather*}
$$

The first summation of Eq. (4) contains the Harary distance between v_{i} and the vertices on its eccentric path $P\left(v_{i}\right)$. Second summation of Eq. (4) contains the distance between v_{i} and its neighbor which are not on the eccentric path $P\left(v_{i}\right)$. The third summation of Eq. (4) contains the distance between v_{i} and a vertex which is neither adjacent to v_{i} nor on the eccentric path $P\left(v_{i}\right)$. Hence the equality in Eq. (4) holds if and only if $d=\operatorname{diam}(G) \leq 2$. It is true for all $v_{i} \in V(G)$. Hence $\operatorname{diam}(G) \leq 2$.

Corollary 2.6: Let G be a self-centered graph with n vertices and radius $r=r(G)$, then
$H(G) \geq \frac{1}{2 r}\left[n(n-2 r)+2 m(r-1)-n r\left(1-\sum_{i=1}^{r} \frac{1}{i}\right)\right]$.
Equality holds if and only if diam $(G) \leq 2$.
Proof: Proof follows by substituting $e_{i}=e\left(v_{i}\right)=r, i=1,2, \ldots, n$ in Eq. (3).

ALGORITHM

Adjacency matrix $A(G)$ of graph G is defined as, the
rows and columns of $A(G)$ are indexed by $V(G)$. If $i \neq j$ then the (i, j) - entry of $A(G)$ is 0 for vertices i and j nonadjacent, and the (i, j) - entry is 1 for i and j adjacent. The (i, i)- entry 0 f $A(G)$ is 0 for $\mathrm{i}=1,2, \ldots, \mathrm{n}$.

Input: Adjacency matrix of G.

a) Here we propose a simple algorithm to find Harary index of graphs with $\operatorname{diam}(G) \leq 2$.

Step1: Declare the order of adjacency matrix of graph G.
Step 2: Consider, for each (ij) ${ }^{\text {th }}$ entry

$$
a[i][j]=1 \rightarrow S[i][j]=1,
$$

and

$$
a[i][j]=0 \rightarrow S[i][j]=\frac{1}{2}
$$

Step 4: Corresponding to each $i^{\text {th }}$ row the string $S\left(u_{i}\right)$ is

$$
S\left(u_{i}\right)=\sum_{a[i][j]=1} S(a[i][j])+\sum_{a[i j][j]=0} S(a[i][j])-\frac{1}{2} .
$$

Step 5: Find the Harary index of graph G as
$H(G)=\frac{1}{2} \sum_{i=1}^{n} S\left(u_{i}\right)$.

Output: Harary index of graph G with $\operatorname{diam}(G) \leq 2$.
b) Here we have given a simple algorithm to find upper bounds for Harary index of graphs.

Input: Adjacency matrix of G.

Step1: Declare the order of adjacency matrix of graph G.
Step 2: Consider for each (ij) ${ }^{\text {th }}$ entry

$$
a[i][j]=1 \rightarrow S[i][j]=1
$$

and

$$
a[i][j]=0 \rightarrow S[i][j]<\frac{1}{2}
$$

Step 4: Corresponding to each $i^{\text {th }}$ row the string $S\left(u_{i}\right)$ is

$$
S\left(u_{i}\right)<\sum_{a[i][j]=1} S(a[i][j])+\sum_{a[i][j]=0} S(a[i][j])-\frac{1}{2} .
$$

Step 5: Find the Harary index of graph G as

$$
H(G)<\frac{1}{2} \sum_{i=1}^{n} S\left(u_{i}\right) .
$$

Output: Bound for the Harary index of graph G.

ACKNOWLEDGMENT

The authors are thankful to the University Grants

Commission (UGC), Govt. of India for support through research grant under UPE FAR-II grant No. F 14-3/2012 (NS/PE).

References

[1] SC. Basak, G J. Niemi and G. D. Veith, "Computational Chemical Graph Theory", Nova Sciencce, ed. D. H Rouvaray, Commack, New York, pp. 2351990.
[2] S. C Basak, J. Monsrud, M. E. Rosen, C. M. Frane and V R. Magnuson, Acta Pharm. Jugosl., vol. 36, no. 811986.
[3] J. A. Bondy, U. S. R. Murty, "Graph Theory", Springer, 2008.
[4] F. Buckley, F. Harary, "Distance in Graphs", Addison-Wesley, Redwood 1990.
[5] K. C. Das, B. Zhou, N. Trinajstic., "Bounds on Harary Index", J. Math.Chem. vol. 46, pp. 1369-1376, 2009
[6] K. C. Das, K. Xu, I. Gutman., "On Zagreb and Harary indices", MATCH Commun. Math. Comput. Chem, vol. 70, pp. 301-314, 2013.
[7] F. Harary, "Graph Theory", Narosa Publishing House, New Delhi, 1998.
[8] O. Ivanciuc, T. S. Balaban, A. T. Balaban, "Reciprocal distance matrix, related local vertex invariants and topological indices", J. Math. Chem, Vol. 12, pp. 309-318, 1993.
[9] O. Ivanciuc, QSAR comparative study of Wiener descriptors for weighted molecular graphs. J. Chem. Inf. Comput. Sci. vol. 40, pp. 1412-1422, 2000.
[10] L. B. Kier and L. H. Hall, "Molecular Connectivity in Chemistry and Drug Research", Academic Press, New York, 1976.
[11] L. B. Kier and L. H. Hall, "Molecular Connectivity in StructureActivity Analysis", Research Stu Press, Letchworth, 1986.
[12] B. Lučić, I. Lukovits, S. Nikolić, N. Trinjstić, "Distance related indexes in the quantitative strucuture-property relationship modeling", J. Chem. Inf. Comput. Sci, vol. 41, pp. 527-535, 2001.
[13] Z. Mihalić, N. Trinajstić, "A graph theoretical approach to structure- property relationships", J. Chem. Educ, vol. 69, pp. 701-712, 1992.
[14] D. Plavšić, S. Nikolić, N. Trinajstić, Z. Mihalić, On the Harary index for the characterization for chemical graphs, J. Math. Chem., Vol. 12, pp.235-250, 1993.
[15] H. S. Ramane and A. B. Ganagi, H. B. Walikar, "Wiener index of graphs in terms of eccentricities", Iranian Journal of Mathematical Chemistry, vol. 4, no. 2, pp. 239-248, 2013.
[16] R. Todeschini, V. Consonni, "Handbook of Molecular Descriptors", Wiley-VCH, Wienheim, 2000.
[17] R. Todeschini, V. Consonni, "Molecular Descriptors for Chemoinformatics", vol. I, vol. II., Wiley-VCH, Weinheim, , 2009.
[18] D. B. West, "Introduction to Graph Theory", PHI Learning, New Delhi, 2009.
[19] K. Xu, N. Trinajstić, "Hyper-Wiener and Harary indices of graphs with cut edges", Util. Math. Vol. 84, pp. 153-163, 2011.
[20] K. Xu., "Trees with the seven smallest and eight greatest Harary indices", Discrete Appl. Math. Vol. 160, pp. 321-331, 2012.
[21] K. Xu, K. C. Das, Extremal unicyclic and bycyclic graphs with r espect to Harary index. Bull. Malays. Math. Soc. Vol. 36, no. 2, 373- 383, 2013.
[22] K. Xu, K. Das, "On Hrary index of graphs", Discrete Appl. Math., vol. 159, pp. 1631-1640, 2011.
[23] B. Zhou, X. Cai, N. Trinjstić, "On the Harary index", J. Math. Chem., vol. 44, pp. 611-618, 2008.

