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Some Bounds for Harary Index of Graphs.
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1

Abstract— Harary index of graph G is defined as the sum of reciprocal of distance between all pairs of vertices of the graph G and is
denoted by H(G) . Eccentricity of vertex v in G is the distance to a vertex farthest from v . In this paper we obtain some bounds for H(G)
in terms of eccentricities. Further we extend these results to the self-centered graphs and also we have given simple algorithm to find the

Harary index of graphs.
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INTRODUCTION

HROUGHOUT this paper we have consider only

simple and connected graph without loops and

multiple edges. LetGbe a graph with vertex set
V(G) ={v,v,,.v,} and edge set E(G). The distance
between two vertices u,vof G is denoted by d(u,v) and
is defined as the length of the shortest path between u and
vin graph G . The degree of a vertex vin G is the number
of edges incident to it and is denoted by deg(v). The
eccentricity e(v)of a vertex Vis the maximum distance
from it to any other vertex,

e(v) =max{d(u,v) |ueV(G)}.

The radius r(G) of a graph Gis the minimum
eccentricity of the vertices. A shortest U—V path is often
called geodesic. The diameter d(G) of a connected graph G
is the length of any longest geodesic. A vertex Vv is called
central vertex of G if e(v) =r(G). A graph is said to be self-
centered if every vertex is a central vertex. Thus in a self-
centered graph r(G) = d(G) . An eccentric vertex of a vertex
Vv is a vertex farthest fromV. An eccentric path P(v) is a
path of length e(v) joining v and its eccentric vertex. For

a given vertex there may exists more than one eccentric
path.

The Harary index of graph G denoted by H(G), has

been introduced independently by Plavsic et. al [14] and
by Ivanciuc et. al [8] in 1993 for the characterization of

molecular graphs. If v;,V;,..V, are the vertices of graph G
then the Harary index of G is defined as
1
H(G) = -,
©) z d(vi,v;i)

I<i<jzn SV
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where d(vj,v;)is the distance between vertices Vjand v;.
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The relation between Harary index and other
topological indices of graphs and some properties of
Harary index, and so on are reported in [5], [6], [8], [19],
[20], [21], [22], [23] and its application in pure graph
theory or in mathematical chemistry are reported in
literature [1], [2], [9], [10], [11], [12], [13], [14], [16], [17].

The distance number of a vertex V; of graph G
denoted by d(v; | G) is defined as

dv [G) =D d(vi.v)).-
i=1

Therefore,

1 1
R

i=1
Inspired by the result of [15], we calculated the
Harary index in terms of eccentricities and extended it for
self-centered graphs. For graph theoretic terminology
readers can refer [3], [4], [7], [18].

2 MAIN RESULTS

Theorem 2.1 Let G be a connected graph with N vertices, M
edges ande; =e(v;),1=12,..n. Then

o
1 51

H(G)sz n(n—2)+2m+2n§7—nei @

Further equality holds if and only if for every V;of G, if P(v;)

is one of the eccentric path of Vi, then for every vj eV (G)

which is not on P(v;), d(v; Vi) <2,

Proof: Let P(v;) be one of the eccentric path of v; € V(G).
Let,
Ai1(vi) = {v; | vjis on eccentric path P(v;) of vy},
As(vi) = {v; | vjis adjacent to v; and which is not on the

eccentric path P(v;) of vi},
As(vi) = {v; | vjis not adjacent to v; and not on the
eccentric path P(v;) of v}.
Clearly, Ai(vi) v Az(vi) U As(vi)=V(G) and
|Ai0) | =ei+1,  |Axv;)] = deg(o) -1,
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| As(v ‘)| =n-e; - deg(vi).

Now Z d(vi,v; _z_
<., -

vjeAl(v)
> = deg(v;) -1
véan 403
Z 1 (n e —deg(v)
VjEA:;(V)d(VI’ J) 2
Therefore,
1 < 1
d(vi |G) j:1 d(Vi,Vj)
1 1 1
= n +
VJEAl(Vi)d(Vi’Vj) VjEAz(Vi)d(Vi’Vj) v,-eAa(v)d(V" i)

(n—e; —deg(v;)

e
~ 1

ng:T+deg(vi)—1+ 3
1=

_ (n+deg(vi)—2+§:1_e_i

2 i 2
Therefore,
1w 1
H(G)==
ziZ:l:d(vi G)
10| 1 (n+deg(vi))—2 e
SEZ{Zﬁf_?
=1 | i=t
{n(n 2)+2m+2n2——ne]
=1
For equality,

Let G be a graph and P(v;) be one of the eccentric
paths of v; eV(G). Let A1(vi), A2(vi) and As(v;) be the sets as
defined in the first part of the proof of this theorem.

Let d(vi, vj) =2, where v; € As(v)).

Therefore z . 1 :n_ei_d‘:’g(vi)/
vty VD) 2
N
1 21
v,-eA1<v>d(V" i)
1
and > = deg(v;) -1 .
ety 40V
Thus,
1 X 1
d(v; [G) 45 d(v;,vj)
1 1 1
= Z + Z + z
VJEAl(Vi)d(Vi’Vj) VjEAz(Vi)d(Vi’Vj) v,-eAa(v)d(V" i)
€ L .
:ZTl+deg(Vi)_1+ne'—deQ(v')
i1 ! 2
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_ n+deg(vi)—2+il_e_i.

2 =1 2
Hence,
1 n
_Elzl‘ld(v |G)
1 . 1 (n+deg(vi)—2 e
_ZZ[zi 2 2
i=1 | i=l
1 o1
=—|n(h—-2)+2m+2n ) =-—ne;
4{( )+2m+ le ]
Conversely,

Suppose G is not such graph as defined in the
equality part of this theorem. Then there exist at least one
vertex v; € As(vi) such that d(v;, v;) =2 3. Let As(vi) be
partitioned into two sets A3 (v;) and Az (v;), where
Az (vi) = {v; | vjis not adjacent to v;, not on the eccentric
path P(v;) of v; and d(v;, v;) = 2}

Amn(vi) = {v; | v;is not adjacent to v;, not on the eccentric
path P(v;) of v; and d(v;, v;) 2 3}.
Let |Ax(vi)| =121.So, |A31( )| =n-ei-deg(v) -

Therefore, z_
vje/ﬁ(v)d(""" =
z :deg(vi)_ll
vyt 40 Vi)
1 _(n—g—deg(vi)-1)
Vj€A31(V| (VI’ j) 2
Ul
and Z __
viehg (Vi) (VI’ J) 3
Therefore
1 n 1
v, 16) & d(v,,v;)
1 1
= Z N z 1
Vjepi(Vi)d(Vi’Vj) VjeAz(Vi)d(Vi’Vj)
1 1
avivp) dwiv)
vjehg(vi) U7 viehAg(vi) inVj
o
g (n—g —deg(v;)-1) |
<) Z+deg(v;) -1+ i i 1
le, 9(v;) . !
_(n- e—deg(v) 2) Z
Thus,

I 1
H(G):Eiz:l:d(vim)

n

11 (n-e —deg(v)-2) & |
<32 2t 5 27%

i=1 [ i=l
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[n(n 2)+2m+2n2——z —%I]

i=1 i=1

< _[n(n 2)+2m+ ZnZ—— ne; }

i=1
as [ 21, which is a contradiction. This contradiction proves the
result.

O

Corollary 2.2 Let G be a self-centered graph with n vertices, m
edges and radius r = r(G), then

H(G) < —{n(n 2)+2m+ ZnZ—— nr}
i=1
Equality holds if and only if for every vertex v; of a self-centered
graph G, if P(v;) is one of the eccentric path of v; then for every v;
V(G) which is not on the eccentric path P(v;), d(vi, v;) < 2.

Proof. For self-centered graph each vertex has same
eccentricity equal to the radius 7, thatis, e; = e(vi) =7r,i=1, 2,
.., n. Therefore from Eq. (1)

H(G) <—{n(n 2)+2m+22nlzr:%—zn:r}

i=1 i=1 i

{n(n 2)+2m+ ZnZ%— nr}

=1
The proof of the equality part is similar to the proof of equality
part of Theorem 2.1.

U

Theorem 2.3 Let G be a connected graph with n vertices and e; =
e(;),i=1,2,...,n, then

o
1 51
H(G)<=|n(n-1 Z-ne |. 2
©) 2[n(n )+n§i ne.] 2
Equality holds if and only if for every vertex v; of G, if P(v;) is is
one of the eccentric path of v;, then for every v; € V(G) which is not
on P(v;), d(vi, v;) = 1.

Proof: Let e; = e(vi), i = 1, 2,
eccentric path of v; € V(G).

., n and P(v;) be one of the

Let  Bi(vi) ={v; | v; is on eccentric path P(v;) of vy},

Bs(vi) = {v; | vj is not on the eccentric path P(v;) of v;}.
Clearly Bi(vi)u Ba(vi) =V(G) and

|B1( ‘)|=€,‘+1 |Bz(U,‘)|=n—€,‘—1.

Now Z = Z—

vjeBy(vi) d(v' ! )

> e,
VjeBa(vi) (i, vj)
Therefore

1 o1
d(vi|G>‘,Zl:d(vi,v,-)
1 1

—+ —_—
d(Vi,Vj d(Vi,Vj

Il
m
2V

i) vieBy(vi)

Therefore

For equality,

Let G be a graph and P(v;) be one of the eccentric
paths of v; €V(G). Let Bi(vi) and B»(vi) be the sets as
defined in the first part of the proof of this theorem.

Let d(vi, vj) =1, where v; € B2(v)).

Therefore Z 1 =n-¢ -1,

VjeBa (Vi) (V" i)

]

and - A l
vjeBl(vi)d(Vi’Vj) i !
Therefore
1 o1
d; [G) = d(vi,vj)
~ 1 1
vjeBy(v;) (V" J) vjeBy(vi) (V" J)
&
=Z:71+n—ei -1.
i1 !
Therefore
o1
H(G —
©)= Z“d(V |G)
1 n
:Ez Z +(n—g —1)
i=1
_1 n(n—1)+nezii—ne-
2 =
Conversely,

Suppose G is not such graph as defined in the
equality part of this theorem. Then there exist at least one
vertex v; € B(vi) such that d(vi, v;)) = 2. Let Bx(v:) be
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partitioned into two sets B2 (v;) and Bx(v;), where 1 I
Bxn(vi) = {v; | vj is not on the eccentric path P(v;) of v; and H(G) > —|n% —ne; +2m(d —1) - nd 1—2T ) 3)
d@;, vj) = 1) 2 [ { = 'ﬂ
Bxn(vi) = {v; | v; is not on the eccentric path P(v;) of v; and Equality holds if and only if diam(G) <2.
d(vi, vj) 2 2}. Proof: Let P(v;) be one of the eccentric path of v; € V(G).
Let |Bn(vi)| =121 Let Ai1(vi) = {v; | v; is on the eccentric path P(v;) of v},
Therefore |Bai(v))| =n-ei-1-1. As(vi) ={v; | v;is adjacent to v; and which is not on
1 the eccentric path P(v;) of vy},
Therefore Z (v Vi) ZT As(v)) =p{Uj | (Uj )is not} adjacent to v; and not on the
jeButa) = eccentric path P(v;) of v;}.
1 e 1) and 1 Clearly  Ai(vi) U Ax(vi) U As(vi) = V(G)  and
o A ! a2 [Afe) | =ei+1, | Ax0)] = deg(®) -
Therefore | Aso)] =n e~ deg( )
n
Z Now Z d(v,, )_Z—
d(V |G) = (V|1V ) vieA (vi) i

1

1 1 Z =deg(v;) -1
_— _ V, 1
%: Vi J) vj E%(Vi)d(vi’vj) VjeBZzz(vi)d( ihVj) vieho (Vi) ( )
1 (n e; —deg(v; ))

]
sZTl+(n—ei—1—|E). vje%fv) d(vi.v J) d
Therefore Therefore
= d(v d(v; |G = d(vi, Vi)

s%nrzi%ﬂn—ei—l—%)] oyt Z Ly 1

+ + _—
VjeAl(Vi)d(Vi’Vj) VjeAz(Vi)d(Vi’vj) Vje%(vi)d(vilvj)

1 n n 1 €j 1 & b N |
SEZ{n(n—l)ZE+ nZT—nei] asl>1. 22%+deg(vi)—1+ (n—e; —deg(v;))
i=L

d

1% n ol ¢
SEZ[n(n—l)—E+ nZT—nei]. {n_ei +deg(v;)(d —1)—d[1—2%ﬂ.

This is a contradiction. Hence the proof.

O
Therefore
If G is a self-centered graph then e; = e(v;) = r(G) for H(G) = 1 Zn: 1
alli=1,2, ..., n Substituting this in Eq. (2) we get following —~d(v; |G)
corollary. B
1 n & 1
Corollary 2.4: Let G be a self-centered graph with n vertices and z od e~ [n & +deg(vi)(d -1) - d[l e TJ]
€ - B
radius v = 1(G), then H(G) < 1 n(n-1)+ nZi— nr|. 1 &g
2 i ! =50 n® —ne; +2m(d -1)—nd[1- > =||.
—
Equality holds if and only if for every vertex v; of a self- i=1
centered graph G, if P(v;) is one of the eccentric path of v; then for n
every v; € V(G) which is not on the eccentric path P(v;), d(vi, v;) = since Zdeg (vj)=2m.
1. i=1

Theorem 2.5 Let G be a connected graph with n vertices, m
edges and diam(G) = d. Lete;=e(v;),i=1,2, ..., n, then For equality,
Let diam(G) <2.
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Case 1: If diam(G) =1 then G = K,.. Therefore As3(v;) = ® and e;
=e(w;)=1,1=1,2,...

Therefore

&

H@G)== [n —n()+2m(d -1) - nd( z%ﬂ:n(nz—l).

=1

Case 2: If diam(G) = 2, then for v; € A3(v;), d(vi, vj) = 2.
1 _(n—g —deg(vi))
(v, vy) 2

Therefore,
viehAg(vi)

Hence H(G) = —— [n —ne; +2m(d —1) - nd[l—i%ﬂ

i=1
1 <N
=—|n(n-2)-ne; +2m+2n ) —|.
4| n(n-2)-ne le

Conversely,

>

d(v; IG) Z (V.,V)

j=1
1 1

= + +
VjeA]_(Vi)d(Vi’Vj) d(Vi,Vj d(Vi,Vj)

(4)
viehy(vi) vjeAg(vi)
The first summation of Eq. (4) contains the Harary
distance between v; and the vertices on its eccentric path P(v;).
Second summation of Eq. (4) contains the distance between v;
and its neighbor which are not on the eccentric path P(v;). The
third summation of Eq. (4) contains the distance between v;
and a vertex which is neither adjacent to v; nor on the
eccentric path P(v;). Hence the equality in Eq. (4) holds if and
only if d = diam(G) < 2. It is true for all v; € V(G). Hence
diam(G) < 2.
O

Corollary 2.6: Let G be a self-centered graph with n vertices and
radius r = r(G), then

H(G) 2%[n(n—2r)+2m(r—1)—n{l—zr:%ﬂ. )

i=1
Equality holds if and only if diam(G) < 2.

Proof: Proof follows by substituting e; =e(vi) =r,i=1,2, ..., n
in Eq. (3).

ALGORITHM
Adjacency matrix A(G) of graph G is defined as, the

IJSER © 2016

rows and columns of A(G) are indexed by V(G). If i # j
then the (i, j)- entry of A(G) is 0 for vertices i and j non-
adjacent, and the (i, j)- entry is 1 for i and j adjacent. The
(i, i)- entry 0f A(G)is O fori=1, 2, ...,n

Input: Adjacency matrix of G.

a) Here we propose a simple algorithm to find Harary
index of graphs with diam(G) < 2.

Stepl: Declare the order of adjacency matrix of graph G.

)th

Step 2: Consider, for each (ij)" entry

alil[j1=1- S[il[j]1=1,
and

alil[j1 -0 - S{ILi1 =

Step 4: Corresponding to each i row the string S(u;) is

S(u)= Y. S@lilliD+ ZS(a[n][m——
afil[jl= a[i][j1=0
Step 5: Find the Harary index of graph G as

H(G):%ZS(ui).
i=1

Output: Harary index of graph G with diam(G)<2.

b) Here we have given a simple algorithm to find upper
bounds for Harary index of graphs.

Input: Adjacency matrix of G.

Stepl: Declare the order of adjacency matrix of graph G.
Step 2: Consider for each (i)™ entry
ali]lil=1—S[il[il=1,
and

ali][j]=0 - Sl j] <§.

Step 4: Corresponding to each i row the string S(u;) is

S(u)< Y. S(lilli)+ ZS(amm)——
afil[jI= a[i][j1=0
Step 5: Find the Harary index of graph G as

1 n
H(G)<EiZ:l:S(ui).

Output: Bound for the Harary index of graph G.
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