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Some Bounds for Harary Index of Graphs. 
H. S. Ramane, V. V. Manjalapur 

 

Abstract— Harary index of graph G  is defined as the sum of reciprocal of distance between all pairs of vertices of the graph G  and is 
denoted by ( )H G . Eccentricity of vertex v in G is the distance to a vertex farthest from v . In this paper we obtain some bounds for ( )H G
in terms of eccentricities. Further we extend these results to the self-centered graphs and also we have given simple algorithm to find the 
Harary index of graphs. 
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1 INTRODUCTION                                                     
HROUGHOUT this paper we have consider only 
simple and connected graph without loops and 
multiple edges. Let G be a graph with vertex set 

},...,{)( 21 nvvvGV =  and edge set )(GE . The distance 
between two vertices vu, of G  is denoted by ),( vud and 
is defined as the length of the shortest path between u and 
v in graph G . The degree of a vertex v in G is the number 
of edges incident to it and is denoted by deg(v). The 
eccentricity )(ve of a vertex v is the maximum distance 
from it to any other vertex, 

)}(|),(max{)( GVuvudve ∈= . 
The radius )(Gr  of a graph G is the minimum 

eccentricity of the vertices. A shortest vu −  path is often 
called geodesic. The diameter )(Gd  of a connected graph G
is the length of any longest geodesic. A vertex v  is called 
central vertex of G  if )()( Grve = . A graph is said to be self-
centered if every vertex is a central vertex. Thus in a self-
centered graph )()( GdGr = . An eccentric vertex of a vertex 
v  is a vertex farthest from v . An eccentric path )(vP  is a 
path of length )(ve  joining v  and its eccentric vertex. For 
a given vertex there may exists more than one eccentric 
path. 
 

The Harary index of graph G  denoted by )(GH , has 
been introduced independently by Plavsic et. al [14] and 
by Ivanciuc et. al [8] in 1993 for the characterization of 
molecular graphs. If nvvv ,..., 21  are the vertices of graph G
then the Harary index of G  is defined as  

∑
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where ),( ji vvd is the distance between vertices iv and jv . 

The relation between Harary index and other 
topological indices of graphs and some properties of 
Harary index, and so on are reported in [5], [6], [8], [19], 
[20], [21], [22], [23] and its application in pure graph 
theory or in mathematical chemistry are reported in 
literature [1], [2], [9], [10], [11], [12], [13], [14], [16], [17]. 
 

The distance number of a vertex iv  of graph G
denoted by )|( Gvd i  is defined as  
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Therefore , 
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Inspired by the result of [15], we calculated the 
Harary index in terms of eccentricities and extended it for 
self-centered graphs. For graph theoretic terminology 
readers can refer [3], [4], [7], [18]. 

2 MAIN RESULTS 
Theorem 2.1 Let G be a connected graph with n vertices, m
edges and )( ii vee = , ni ,...2,1= . Then 
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Further equality holds if and only if for every iv of G , if )( ivP
is one of the eccentric path of iv , then for every )(GVv j ∈

which is not on )( ivP , 2),( ≤ji vvd . 
Proof: Let P(vi) be  one of the eccentric path of vi ∈ V(G). 

Let,  
A1(vi) = {vj  | vj is on eccentric path P(vi) of vi}, 
A2(vi) = {vj  | vj is adjacent to vi and which is not on the 

eccentric path P(vi) of vi}, 
A3(vi) = {vj  | vj is not adjacent to vi and not on the 
eccentric path P(vi) of vi}. 
Clearly,      A1(vi) ∪ A2(vi) ∪ A3(vi) = V(G)      and 
                  |A1(vi)| = ei + 1,       |A2(vi)| = deg(vi) – 1, 
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 |A3(vi)| = n – ei  – deg(vi). 
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For equality, 
 Let G be a graph and P(vi) be one of the eccentric 
paths of vi ∈V(G). Let A1(vi), A2(vi) and A3(vi) be the sets as 
defined in the first part of the proof of this theorem. 
 Let  d(vi, vj) = 2, where  vj ∈ A3(vi). 

Therefore 
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Conversely, 
 Suppose G is not such graph as defined in the 
equality part of this theorem. Then there exist at least one 
vertex vj ∈ A3(vi) such that d(vi, vj) ≥ 3. Let A3(vi) be 
partitioned into two sets A31(vi) and A32(vi), where  
A31(vi) = {vj | vj is not adjacent to vi, not on the eccentric 
path P(vi) of vi and d(vi, vj) = 2} 
A32(vi) = {vj | vj is not adjacent to vi, not on the eccentric 
path P(vi) of vi and d(vi, vj) ≥ 3}. 
Let |A32(vi)| = l ≥ 1. So, |A31(vi)| = n – ei – deg(vi) – l. 

Therefore, ∑∑
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as l ≥ 1, which is a contradiction. This contradiction proves the 
result.                                                                                     

  � 

Corollary 2.2 Let G be a self-centered graph with n vertices, m 
edges and radius r = r(G), then  
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Equality holds if and only if for every vertex vi of a self-centered 
graph G, if P(vi) is one of the eccentric path of vi then for every vj ∈ 
V(G) which is not on the eccentric path P(vi), d(vi, vj) ≤ 2. 

Proof. For self-centered graph each vertex has same 
eccentricity equal to the radius r, that is, ei = e(vi) = r, i = 1, 2, 
… , n. Therefore from Eq. (1) 
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The proof of the equality part is similar to the proof of equality 
part of Theorem 2.1. 

  � 

Theorem 2.3 Let G be a connected graph with n vertices and ei = 
e(vi), i = 1, 2, … , n, then  












−+−≤ ∑

=

ie

i
ine

i
nnnGH

1

1)1(
2
1)( .                           (2) 

Equality holds if and only if for every vertex vi of G, if P(vi) is  is 
one of the eccentric path of vi, then for every vj ∈ V(G) which is not 
on P(vi), d(vi, vj) = 1. 

Proof: Let e i = e(vi), i = 1, 2, … , n and P(vi) be  one of the 
eccentric path of vi ∈ V(G). 
Let      B1(vi) = {vj  | vj is on eccentric path P(vi) of vi}, 
           B2(vi) = {vj | vj  is not on the eccentric path P(vi) of vi}. 
Clearly      B1(vi) ∪ B2(vi) = V(G)      and 
                |B1(vi)| = ei + 1,       |B2(vi)| = n – ei – 1. 
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For equality, 
 Let G be a graph and P(vi) be one of the eccentric 
paths of vi ∈V(G). Let B1(vi) and B2(vi) be the sets as 
defined in the first part of the proof of this theorem. 
 Let  d(vi, vj) = 1, where  vj ∈ B2(vi). 

Therefore 1
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Conversely, 
 Suppose G is not such graph as defined in the 
equality part of this theorem. Then there exist at least one 
vertex vj ∈ B2(vi) such that d(vi, vj) ≥ 2. Let B2(vi ) be 
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partitioned into two sets B21(vi) and B22(vi), where  
     B21(vi) = {vj | vj is not on the eccentric path P(vi) of vi and 
d(vi, vj) = 1} 
     B22(vi) = {vj | vj is not on the eccentric path P(vi) of vi and 
d(vi, vj) ≥ 2}. 
Let |B22(vi)| = l ≥ 1 
Therefore |B21(vi)| = n – ei – 1 – l. 
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This is a contradiction. Hence the proof.                                                               
  � 

 
If G is a self-centered graph then ei = e(vi) = r(G) for 

all i = 1, 2, … , n. Substituting this in Eq. (2) we get following 
corollary. 
 
Corollary 2.4: Let G be a self-centered graph with n vertices and 
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 Equality holds if and only if for every vertex vi of a self-
centered graph G, if P(vi) is one of the eccentric path of vi then for 
every vj ∈ V(G) which is not on the eccentric path P(vi), d(vi, vj) = 
1. 
 
 
 

Theorem 2.5 Let G be a connected graph with n vertices, m 
edges and diam(G) = d. Let ei = e(vi), i = 1, 2, … , n, then  
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Equality holds if and only if diam(G) ≤ 2. 
Proof: Let P(vi) be  one of the eccentric path of vi ∈ V(G). 
Let      A1(vi) = {vj | vj  is on the eccentric path P(vi) of vi}, 
           A2(vi) = {vj  | vj is adjacent to vi and which is not on 
the eccentric path P(vi) of vi}, 
          A3(vi) = {vj | vj is not adjacent to vi and not on the 
eccentric path P(vi) of vi}. 
Clearly      A1(vi) ∪ A2(vi) ∪ A3(vi) = V(G)      and 
                |A1(vi)| = ei + 1,       |A2(vi)| = deg(vi) – 1,        

 |A3(vi)| = n – ei  – deg(vi). 
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For equality, 
 Let diam(G) ≤ 2. 
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Case 1: If diam(G) = 1 then G = Kn. Therefore A3(vi) = Φ and ei 
= e(vi) = 1, i = 1, 2, … , n. 
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Conversely, 
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 The first summation of Eq. (4) contains the Harary 
distance between vi and the vertices on its eccentric path P(vi). 
Second summation of Eq. (4) contains the distance between vi 
and its neighbor which are not on the eccentric path P(vi). The 
third summation of Eq. (4) contains the distance between vi  
and a vertex which is neither adjacent to vi nor on the 
eccentric path P(vi). Hence the equality in Eq. (4) holds if and 
only if d = diam(G) ≤ 2. It is true for all vi ∈ V(G). Hence 
diam(G) ≤ 2.                                                                               

  � 
 

Corollary 2.6: Let G be a self-centered graph with n vertices and 
radius r = r(G), then   
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Equality holds if and only if diam(G) ≤ 2. 
 
Proof: Proof follows by substituting ei = e(vi) = r, i = 1, 2, … , n 
in Eq. (3).                  

  � 
 
 
 
 
 

ALGORITHM 
 Adjacency matrix A(G) of graph G is defined as, the 

rows and columns of A(G) are indexed by V(G). If ji ≠  
then the ),( ji - entry of A(G) is 0 for vertices i and j non-
adjacent, and the ),( ji - entry is 1 for i and j adjacent. The 
(i, i)- entry 0f A(G) is 0 for i=1, 2, …, n.  

Input: Adjacency matrix of G. 

a) Here we propose a simple algorithm to find Harary 
index of graphs with diam(G) ≤ 2. 

 
Step1: Declare the order of adjacency matrix of graph G. 
Step 2: Consider, for each thij)( entry  

    1]][[1]][[ =→= jiSjia ,  
 and 

    
2
1]][[0]][[ =→= jiSjia .  

Step 4: Corresponding to each thi  row the string )( iuS is  

 
2
1])][[(])][[()(

1]][[ 0]][[

−+= ∑ ∑
= =jia jia

i jiaSjiaSuS . 

Step 5: Find the Harary index of graph G as 

 ∑
=

=
n

i
iuSGH

1

)(
2
1)( . 

Output: Harary index of graph G with diam(G) ≤ 2 . 

 
b) Here we have given a simple algorithm to find upper 

bounds for Harary index of graphs. 

Input: Adjacency matrix of G. 

Step1: Declare the order of adjacency matrix of graph G. 
Step 2: Consider for each thij)( entry  
    1]][[1]][[ =→= jiSjia ,  
 and 

    
2
1]][[0]][[ <→= jiSjia .  

Step 4: Corresponding to each thi  row the string )( iuS is  

 
2
1])][[(])][[()(

1]][[ 0]][[

−+< ∑ ∑
= =jia jia

i jiaSjiaSuS . 

Step 5: Find the Harary index of graph G as 

 ∑
=

<
n

i
iuSGH

1

)(
2
1)( . 

Output: Bound for the Harary index of graph G. 
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